Solving Poisson’s Equation using Adaptive Mesh Refinement

نویسندگان

  • D. F. Martin
  • K. L. Cartwright
چکیده

This report discusses an implementation [1] of an Adaptive Mesh Refinement (AMR) Poisson solver which solves Poisson’s equation using multigrid relaxation. Local refinement introduces several added issues. Special care has been taken to match the solution across coarse/fine interfaces so that the solution maintains global second order accuracy. The nested mesh hierarchy can be defined by the user, Richardson extrapolation, or a user supplied criterion. Extensive use of Boxlib [2] has reduced the bookkeeping needed by the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a parallel Poisson's equation solver with adaptive mesh refinement and its application in field emission prediction

A parallel electrostatic Poisson’s equation solver coupled with parallel adaptive mesh refinement (PAMR) is developed in this paper. The three-dimensional Poisson’s equation is discretized using the Galerkin finite element method using a tetrahedral mesh. The resulting matrix equation is then solved through the parallel conjugate gradient method using the non-overlapping subdomain-by-subdomain ...

متن کامل

Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves

We will present an approach to numerical simulation on recursively structured adaptive discretisation grids. The respective grid generation process is based on recursive bisection of triangles along marked edges. The resulting refinement tree is sequentialised according to a Sierpinski space-filling curve, which leads to both minimal memory requirements and inherently cache-efficient processing...

متن کامل

A Fourth-Order Accurate Finite-Volume Method with Structured Adaptive Mesh Refinement for Solving the Advection-Diffusion Equation

We present a fourth-order accurate algorithm for solving Poisson’s equation, the heat equation, and the advection-diffusion equation on a hierarchy of block-structured, adaptively refined grids. For spatial discretization, finite-volume stencils are derived for the divergence operator and Laplacian operator in the context of structured adaptive mesh refinement and a variety of boundary conditio...

متن کامل

A node-centered local refinement algorithm for Poisson’s equation in complex geometries

This paper presents a method for solving Poisson’s equation with Dirichlet boundary conditions on an irregular bounded three-dimensional region. The method uses a nodal-point discretization and adaptive mesh refinement (AMR) on Cartesian grids, and the AMR multigrid solver of Almgren. The discrete Laplacian operator at internal boundaries comes from either linear or quadratic (Shortley–Weller) ...

متن کامل

A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains

We present a numerical method for solving Poisson’s equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996